Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
J Colloid Interface Sci ; 645: 627-638, 2023 Sep.
Article in English | MEDLINE | ID: covidwho-2313817

ABSTRACT

There is a close relationship between the SARS-CoV-2 virus and lipoproteins, in particular high-density lipoprotein (HDL). The severity of the coronavirus disease 2019 (COVID-19) is inversely correlated with HDL plasma levels. It is known that the SARS-CoV-2 spike (S) protein binds the HDL particle, probably depleting it of lipids and altering HDL function. Based on neutron reflectometry (NR) and the ability of HDL to efflux cholesterol from macrophages, we confirm these observations and further identify the preference of the S protein for specific lipids and the consequent effects on HDL function on lipid exchange ability. Moreover, the effect of the S protein on HDL function differs depending on the individuals lipid serum profile. Contrasting trends were observed for individuals presenting low triglycerides/high cholesterol serum levels (LTHC) compared to high triglycerides/high cholesterol (HTHC) or low triglycerides/low cholesterol serum levels (LTLC). Collectively, these results suggest that the S protein interacts with the HDL particle and, depending on the lipid profile of the infected individual, it impairs its function during COVID-19 infection, causing an imbalance in lipid metabolism.


Subject(s)
COVID-19 , Lipoproteins, HDL , Humans , Spike Glycoprotein, Coronavirus , SARS-CoV-2/metabolism , Cholesterol , Triglycerides
2.
J Am Chem Soc ; 144(7): 2968-2979, 2022 02 23.
Article in English | MEDLINE | ID: covidwho-1683928

ABSTRACT

Coronavirus disease-2019 (COVID-19), a potentially lethal respiratory illness caused by the coronavirus SARS-CoV-2, emerged in the end of 2019 and has since spread aggressively across the globe. A thorough understanding of the molecular mechanisms of cellular infection by coronaviruses is therefore of utmost importance. A critical stage in infection is the fusion between viral and host membranes. Here, we present a detailed investigation of the role of selected SARS-CoV-2 Spike fusion peptides, and the influence of calcium and cholesterol, in this fusion process. Structural information from specular neutron reflectometry and small angle neutron scattering, complemented by dynamics information from quasi-elastic and spin-echo neutron spectroscopy, revealed strikingly different functions encoded in the Spike fusion domain. Calcium drives the N-terminal of the Spike fusion domain to fully cross the host plasma membrane. Removing calcium, however, reorients the peptide back to the lipid leaflet closest to the virus, leading to significant changes in lipid fluidity and rigidity. In conjunction with other regions of the fusion domain, which are also positioned to bridge and dehydrate viral and host membranes, the molecular events leading to cell entry by SARS-CoV-2 are proposed.


Subject(s)
Lipid Bilayers/metabolism , Peptide Fragments/metabolism , SARS-CoV-2/chemistry , Spike Glycoprotein, Coronavirus/metabolism , Amino Acid Sequence , Cholesterol/chemistry , Lipid Bilayers/chemistry , Membrane Fluidity , Neutron Diffraction , Protein Domains , Scattering, Small Angle , Spike Glycoprotein, Coronavirus/chemistry , Unilamellar Liposomes/chemistry , Unilamellar Liposomes/metabolism
3.
Sci Rep ; 11(1): 14867, 2021 07 21.
Article in English | MEDLINE | ID: covidwho-1320237

ABSTRACT

SARS-CoV-2 spike proteins are responsible for the membrane fusion event, which allows the virus to enter the host cell and cause infection. This process starts with the binding of the spike extramembrane domain to the angiotensin-converting enzyme 2 (ACE2), a membrane receptor highly abundant in the lungs. In this study, the extramembrane domain of SARS-CoV-2 Spike (sSpike) was injected on model membranes formed by supported lipid bilayers in presence and absence of the soluble part of receptor ACE2 (sACE2), and the structural features were studied at sub-nanometer level by neutron reflection. In all cases the presence of the protein produced a remarkable degradation of the lipid bilayer. Indeed, both for membranes from synthetic and natural lipids, a significant reduction of the surface coverage was observed. Quartz crystal microbalance measurements showed that lipid extraction starts immediately after sSpike protein injection. All measurements indicate that the presence of proteins induces the removal of membrane lipids, both in the presence and in the absence of ACE2, suggesting that sSpike molecules strongly associate with lipids, and strip them away from the bilayer, via a non-specific interaction. A cooperative effect of sACE2 and sSpike on lipid extraction was also observed.


Subject(s)
COVID-19/virology , Lipid Bilayers/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Angiotensin-Converting Enzyme 2/chemistry , Angiotensin-Converting Enzyme 2/metabolism , Binding Sites , COVID-19/metabolism , COVID-19/physiopathology , Cell Line , Humans , Membrane Fusion/physiology , Neutron Diffraction/methods , Protein Binding , Protein Domains , Spike Glycoprotein, Coronavirus/chemistry , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL